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A B S T R A C T   

Objective: This study aimed to establish a machine learning model that can predict the efficacy of antiseizure 
medications (ASMs) in patients with familial genetic generalized epilepsy (GGE). 
Methods: We prospectively followed up patients with familial GGE for at least 3 years between January 2007 and 
January 2017. We collected and analyzed the patients’ demographic characteristics, medical history, and related 
auxiliary examinations. The results of the epileptic seizures were divided into two categories: seizure-free and 
drug-resistant epilepsy. We selected and trained thirteen classification models, i.e., random forest classifier, 
logistic regression, gradient boosting classifier, light gradient boosting machine, ridge classifier, linear 
discriminant analysis, support vector machine-linear kernel, extra tree classifier, Ada boost classifier, naive Bayes 
classifier, decision tree classifier, K neighbors classifier, and quadratic discriminant analysis, to get the best 
performing classification model. 
Results: A total of 854 patients with familial GGE were included in the study after excluding 89 who were lost to 
follow-up. Among them, 631 patients with familial GGE became seizure-free, and 223 developed drug-resistant 
epilepsy with a 74.89% remission rate. Among the 13 models, the random forest classifier model was the most 
effective with an accuracy of 91.23% and an F1 score of 84.21%. Among the 18 patient characteristics, the most 
effective indicators of the final treatment results were the number of seizure types experienced, response to the 
first drug, prior treatment duration and number of pre-treatment seizures. 
Significance: The random forest classifier model can be used to early predict the results of ASM treatment based 
on the clinical data of patients with familial GGE. This finding can help clinicians make timely adjustments to 
treatment strategies and improve patients’ prognosis.   

1. Introduction 

Epilepsy is one of the most common diseases of the nervous system 
affecting approximately 70 million individuals worldwide (“Global, 
regional, and national burden of neurological disorders, : a systematic 
analysis for the Global Burden of Disease Study, ., ”, 1990–, 2016); 
particularly, genetic generalized epilepsy (GGE) accounts for 15–20% of 

all the incidences of epilepsy. (Jallon and Latour, 2005) Patients with 
GGE usually have a positive prognosis; however, 15–40% develop drug 
resistance. (Mohanraj and Brodie, 2007; Seneviratne et al., 2012) This 
leads to impaired cognitive and social functions, which negatively affect 
the patients’ mental health and quality of life and even cause death. 
(Devinsky, 1999; Laxer et al., 2014). 

Studies of twins and epidemiology have shown that genetic factors 
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are the only definitive cause of GGE (Mullen et al., 2018; Scheffer et al., 
2017); however, most patients are sporadic with no family history. 
(Briellmann et al., 2001) However, patients with familial GGE are 
commonly encountered in clinical practice. In these patients, prompt 
and accurate prediction of the prognosis is necessary for selecting the 
appropriate drug therapy and treatment plan based on the patients’ 
characteristics to improve their prognosis. To address this, considerable 
advancements have been made on the applicability of machine learning 
in the field of epilepsy. It has been widely used in different studies 
involving the imaging studies of patients with epilepsy, (Del Gaizo et al., 
2017) electroencephalogram (EEG) studies, (V et al., 2018) prognosis of 
patients with epilepsy, (Munsell et al., 2015; Wissel et al., 2021, 2020, 
2019) and the prediction of the patient’s response to antiseizure medi-
cations (ASMs). (An et al., 2018; Devinsky et al., 2016; Yao et al., 2019) 
Previous studies have identified different clinical predictors of the pa-
tients’ with GGE response to drug treatment; however, most studies have 
often used traditional methods and focused on the study of predictors of 
the GGE response to ASM in the whole population. (Gesche et al., 2020; 
Voll et al., 2015) To date, there have been no studies on the predictors of 
the prognosis of patients with familial GGE responding to ASMs through 
a machine learning model. 

Therefore, this study aimed to develop a machine learning model 
that specifically predicts the prognosis of patients with familial GGE on 
drug therapy, which is of great significance for clinicians to design 
reasonable treatment plans for patients with familial GGE. 

2. Material and methods 

2.1. Patient and process 

This study included patients with familial GGE diagnosed at the 
Epilepsy Center of the First Affiliated Hospital of Chongqing Medical 
University from January 1997 to January 2017. 

The inclusion criteria were as follows: (1) patients diagnosed with 
GGE by the same epilepsy team according to the definition of the In-
ternational Anti-Epilepsy Alliance (ILAE) in 1989 (“Proposal for revised 
classification of epilepsies and epileptic syndromes. Commission on 
Classification and Terminology of the International League Against Ep-
ilepsy., ”, 1989), (2) patients with a family history of epilepsy, with their 
first-, second-, or third-degree relatives having epilepsy, and (3) patients 
with normal brain magnetic resonance imaging (MRI) findings (no ce-
rebral infarction, hippocampal sclerosis, meningioma, and other sec-
ondary epileptic lesions). 

The exclusion criteria were as follows: (1) patients who refused to 
receive ASM treatment, (2) patients who received treatments other than 
ASMs, such as epilepsy surgery and vagus nerve stimulation during the 
follow-up period, (3) patients who experienced severe liver or kidney 
disease, and (4) patients with irregular medication during treatment and 
poor compliance. 

Upon the patient’s first consultation, a specially trained physician 
conducted a detailed on-site interview of the witness and the patients 
and recorded the demographic information (sex, living area, occupation, 
and educational level), medical history (age at seizure onset, age at ASM 
treatment, seizure type at onset, number of seizures before treatment, 
prior treatment duration, history of febrile seizure, prior treatment 
duration, seizure type at onset, and family history of epilepsy, etc.), and 
related auxiliary examination results (EEG and cranial MRI). Finally, the 
same experienced epilepsy team diagnosed the patient according to the 
diagnostic criteria of the ILAE in 1989. 

For all the diagnosed patients, the same epilepsy team selected an 
appropriate ASM after considering the efficacy and safety of the drug. 
According to the individual situation of the patient, valproic acid, lev-
etiracetam, lamotrigine, or topiramate was mainly used. Subsequently, 
the patient was instructed to consult the outpatient clinic of our center 
for the evaluation of the treatment effect every 4 weeks for the first 6 
months and then at least every 3 months for the evaluation through 

outpatient or telephone follow-up. In each follow-up, the epilepsy ex-
perts recorded the patient’s response to ASM in detail, including the 
dosage form of the drug and the related adverse reactions; appropriate 
and timely adjustments to the treatment plan were devised according to 
the control of seizures (i.e., to increase, decrease, or switch medication). 

This study was approved by the Ethics Committee of the First Affil-
iated Hospital of Chongqing Medical University. All the patients or their 
families were informed about the study, and signed consent forms were 
obtained, allowing the use of patients’ medical record data for research. 

2.2. Definition 

Our data collection began in 1997; therefore, we classified the types 
of GGE according to the 1989 ILAE revised edition, which is divided into 
absence, myoclonic, and general tonic-clonic seizures. (Commission on 
Classification and Terminology of the International League Against Ep-
ilepsy, 1989). 

The first drug was defined as the first drug used after the patient was 
diagnosed with epilepsy; if the drug was changed due to an adverse 
reaction, the drug without side effects was defined as the first effective 
treatment drug. The response to the first drug was defined as the per-
centage decrease in the frequency of seizures from baseline (the average 
number of seizures per month for the 12 months before treatment [if the 
time is less than 12 months, divide the total number of seizures by the 
time]). “Control” was defined as the absence of seizures when the first 
drug was administered; “excellent” was defined as a reduction in seizure 
frequency > 75% during the administration of the first drug; “effective” 
was defined as a reduction in seizure frequency by 51–75% during the 
administration of the first drug; “ineffective” was defined as a reduction 
in seizure frequency < 50% during the administration of the first drug; 
and “deteriorative” was defined as an increase in the frequency of sei-
zures during the administration of the first drug. 

We divided the results of ASM treatment into two modes: (1) 
“seizure-free” was defined as the absence of any type of seizure in the 
patient within 12 months at the end of the follow-up period, and (2) 
“drug-resistant epilepsy” was defined as the use of two or more appro-
priate broad-spectrum ASMs, with persistent seizures. To ensure the 
effectiveness of the drug concentration, we required each ASM to be 
used continuously for at least 3 months to evaluate the efficacy of the 
drug under well-tolerated conditions. 

2.3. Machine learning process 

2.3.1. Experimental data 
In this study, the data of 854 patients with familial GGE were used, 

among them, 631 became seizure-free, 223 developed drug-resistant 
epilepsy; 80% of the original data were used as the training set, and 
the remaining 20% were used as the test set. Data pre-processing 
included two steps: (1) min-max standardization of continuous vari-
ables (age at seizure onset, age at ASM treatment, number of seizures 
before treatment, and prior treatment duration) and (2) one-hot 
encoding that was conducted for categorical variables (living area, 
occupation, educational level, catamenial epilepsy, seizure type at 
onset, number of seizure types ever experienced, respond to the first 
drug, psychiatric condition, history of febrile seizure, intellectual 
disability, developmental delay, status epilepticus, nocturnal seizures, 
and EEG), which were converted into a sparse vector with a value of 1 or 
0. Our experiment included two outcomes, i.e., seizure-free and drug- 
resistant epilepsy. Table 1 shows the details of the selected variables 
and outcomes. 

2.3.2. Related models 
This study was a binary classification problem; therefore, 13 com-

mon machine learning models were used in the study for learning and 
prediction: random forest classifier, logistic regression, gradient boost-
ing classifier, light gradient boosting machine, ridge classifier, linear 
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discriminant analysis, support vector machine-linear kernel, extra tree 
classifier, Ada boost classifier, naive Bayes classifier, decision tree 
classifier, K neighbors classifier, and quadratic discriminant analysis. 

2.3.3. Model performance evaluation metrics 
In this study, five evaluation indicators were used to measure the 

model performance: accuracy, area under the receiver operating char-
acteristic (ROC) curve, sensitivity, specificity, and F1-score. 

2.3.4. Model comparison 
In this study, we used the PyCaret library to establish an environ-

ment, i.e., data type inference, data preprocessing, and dataset division. 
Pycaret will automatically infer whether the feature is a numerical type 
or a categorical type, which need to be checked if its feature inference is 
true by the experimenter manually. Then, it will perform the corre-
sponding preprocessing, and divide the dataset into a training set and a 
test set at a ratio of 8:2. The 13 machine learning models introduced 
earlier (parameter defaults) were used on the divided training set to 
perform ten-fold cross-validation to obtain the accuracy, area under the 
ROC curve (AUC), sensitivity, specificity and F1-score of each model. 
The data were arranged in descending order according to the average 
value of the accuracy (Table 2). Each model’s parameters were also 
described in Table 2. 

As shown in Table 2, the averages of the accuracy, AUC, F1-score, 
and specificity of the random forest classifier were higher compared to 
those of the other models, which were 90.2%, 94.9%, 80.6%, and 87.5% 
respectively. Moreover, its sensitivity was also relatively high at 90.8%. 
Therefore, the random forest classifier model was selected as the prog-
nostic prediction model for patients with familial GGE. 

2.3.5. Parameter selection of prediction model 
In developing the random forest classifier model, the number of 

decision trees and variables tried at each split was tuned according to the 
model errors. The association between the model error and the number 
of decision trees is shown in Fig. 1. It can be observed that when the 
number of decision trees reaches 80, the random forest classifier model 
tends to stabilize. Simultaneously, the three errors had smaller values. 
Therefore, the numbers of trees and variables tried at each split were set 
to 80 and 4, respectively, allowing the final determination of the pre-
diction model. Regarding the training set of 683 cases, the out-of-bag 
error of the model was 10.83%. 

2.4. Statistical analyses 

Statistical analyses were performed using the R software (version 
4.0.5; Comprehensive R Archive Network: https://cran.r-project.or 
g/mirrors.html). Quantitative data following non-normal distributions 
were reported as medians and interquartile ranges (M [P25, P75]) and 
were compared using the nonparametric test. Categorical variables were 
analyzed using the chi-squared test. 

3. Results 

3.1. Patients characteristics 

Overall, 89 patients who were lost to follow-up and seven patients 
who died from January 1997 to January 2017 were excluded. Finally, 
854 patients with familial GGE were included in this study (Fig. 2). 
Among them, 631 patients with familial GGE became seizure-free, and 
223 developed drug-resistant epilepsy with a 74.89% remission rate. 
Catamenial epilepsy, seizure type at onset, number of seizures before 
treatment, prior treatment duration, number of seizure types ever 
experienced, response to the first drug, status epilepticus, and 

Table 1 
The demographic and medical history characteristics of the patients.  

Variable Total (n =
854) 

Seizure-free 
(n = 631) 

Drug-resistant 
epilepsy (n =
223) 

P 

Living area     
Urban area 354 269 85 0.240 
Rural area 500 362 138  

Occupation     
Student 484 354 130 0.851 
Employment 211 158 53  

Unemployment 159 119 40  
Educational level     

Illiteracy or primary 
school 

300 281 82 0.654 

Secondary school 300 226 74  
Senior school 181 130 51  
College or above 73 57 16  

Catamenial epilepsy     
Male 455 339 116 <

0.001 
Female with 
catamenial epilepsy 

16 3 13  

Female with no 
catamenial epilepsy 

383 289 94  

Age at seizure onset 
(year) 

13 (8–19) 13.00 
(8–19) 

12(6–19) 0.055 

Age at ASM treatment 
(year) 

15 
(10–22) 

14 (10–22) 15 (10–22) 0.378 

Seizure type at onset     
Absence seizures 284 195 89 0.014 
Myoclonic seizures 295 234 61  
General tonic-clonic 
seizures 

275 202 73  

Number of seizures 
before treatment 

3 (3–14) 3 (3–10) 14 (9–18) <

0.001 
Prior treatment 

duration (year) 
0.83 
(0.33–3) 

0.5 (0.25–2) 2.5 (1.5–4) <

0.001 
Number of seizure 

types ever 
experienced     
1 458 443 15 <

0.001 
2 180 140 40  
3 216 48 168  

Respond to the first 
drug     
Control 181 170 11 <

0.001 
Excellent 287 236 51  
Effective 102 92 10  
Ineffective 192 112 80  
Deteriorative 92 21 71  

Psychiatric condition     
Positive 88 63 25 0.605 
Negative 766 568 198  

History of febrile 
seizure     
Negative 760 568 192 0.108 
Positive 94 63 31  

Intellectual disability     
Positive 16 9 7 0.105 
Negative 838 622 216  

Developmental delay     
Negative 841 623 218 0.307 
Positive 13 8 5  

Status epilepticus     
Positive 223 114 109 <

0.001 
Negative 631 517 114  

Nocturnal seizures     
Positive 45 28 17 0.067 
Negative 809 603 206  

EEG     
Epileptiform discharge 431 300 131 0.013 
Normal 298 236 62  
NA 125 95 30  

Note: NA: not available, ASM: antiseizure medication, EEG: 
electroencephalogram. 
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epileptiform discharge differed between the seizure free group and drug- 
resistance epilepsy group. Table 1 shows the demographic and medical 
histories of the patients. 

3.2. Using machine learning for early prediction of the efficacy of ASMs 
in patients with familial GGE 

3.2.1. Evaluation of the Random Forest Classifier model 
After the model was successfully constructed, predictions were made 

for the test set of 171 cases. A confusion matrix was used (Fig. 3); 
additionally, the AUC (Fig. 4), sensitivity, specificity, accuracy, and F1 
score (Table 3) were used to measure the prediction effect of the model. 

The confusion matrix is an important tool for evaluating the model 
performance. It can be observed from Fig. 4 that the FP (false positive) 
and FN (false negative) cases predicted by the model are 2 and 13, 
respectively, which indicates the good performance of the constructed 
prediction model. 

The receiver operating characteristic (ROC) curve of the model is 
shown in Fig. 4, and the AUC was 92.6%, indicating the good 

Table 2 
Performance comparison of the different models in the training set.  

Model Parameters Accuracy 
(%) 

AUC 
(%) 

F1-score 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Random forest classifier ‘criterion’: gini, ‘max features’: auto, ‘min samples leaf’: 1, ‘min samples 
split’: 2, ‘n estimators’: 100  

90.2  94.9  80.6  90.8  87.5 

Ridge classifier ‘alpha’: 1.0, ‘normalize’: False,‘solver’: auto,‘tol’: 0.001  89.2  0.00  78.8  94.3  83.3 
Light gradient boosting 

machine 
‘boosting type’: gbdt, ‘learning rate’: 0.1, ‘max depth’: − 1, ‘n estimators’: 
100, ‘num leaves’: 31, ‘subsample for bin’: 200000  

88.9  94.2  78.5  91.3  80.0 

Logistic regression ‘C′: 1.0, ‘intercept scaling’: 1, ‘max iter’: 1000, ‘penalty’: l2, ‘tol’: 0.0001  88.7  94.0  77.9  95.0  82.0 
Linear discriminant 

analysis 
‘solver’: svd, ‘tol’: 0.0001  88.7  94.3  78.4  94.2  80.0 

Extra tree classifier ‘criterion’: gini, ‘max features’: auto, ‘min samples leaf’: 1, ‘min samples 
split’: 2, ‘n estimators’: 100  

88.3  93.9  77.3  93.5  83.0 

Gradient boosting 
classifier 

‘learning rate’: 0.1, ‘max depth’: 3, ‘min samples leaf’: 1, ‘min samples 
split’: 2, ‘n estimators’: 100, ‘subsample’: 1.0  

88.3  94.0  76.9  91.5  85.7 

Ada boost classifier ‘algorithm’: SAMME.R, ‘learning rate’: 1.0, ‘n estimators’: 50  86.8  93.9  73.7  93.5  81.3 
K neighbors classifier ‘leaf size’: 30, ‘n neighbors’: 5, ‘p′: 2, ‘weights’: uniform  86.5  89.6  70.4  91.3  80.0 
Support vector machine- 

linear kernel 
‘alpha’: 0.0001, ‘epsilon’: 0.1, ‘l1 ratio’: 0.15, ‘penalty’: l2  86.5  0.00  71.9  89.2  80.5 

Naive Bayes classifier ‘var moothing’: 1e-09  85.5  92.2  71.5  91.4  67.3 
Decision tree classifier ‘criterion’: gini, ‘min samples leaf’: 1, ‘min samples split’: 2, ‘splittert’: 

best  
83.6  78.4  67.5  85.8  75.7 

Quadratic discriminant 
analysis 

‘store covariance’: False, ‘tol’: 0.0001  65.1  60.1  39.1  73.6  32.3 

Note: AUC: area under the receiver operating curve. 

Fig. 1. Graph of the association between the model error and the number of 
decision trees. The red curve represents the prediction error of the model for 
class 0 data under different numbers of decision trees, and the green curve 
represents the model’s prediction error for class 1 data under different numbers 
of decision trees. The black curve represents the model’s out-of-bag (OOB) 
estimate of the error rate, that is, OOB error. 

Fig. 2. Study flowchart.  
Fig. 3. Confusion matrix and receiver operating characteristic curves of the 
random forest classifier model. 

J. Wu et al.                                                                                                                                                                                                                                      



Epilepsy Research 181 (2022) 106888

5

performance and clinical diagnostic value of the model. 
The accuracy of the model was defined as the proportion of the 

number of samples with accurate predictions to the total number of 
samples, and the accuracy of the constructed model was 91.2%, which 
indicates that the model has a good classification effect. The sensitivity 
(89.9%) and specificity (95.2%) of the model represent the proportions 
of the samples with correct predictions in all the positive and negative 
cases, respectively. It can be observed that the random forest classifier 
model has a good ability to recognize positive and negative examples. 
The F1 value is 84.2, which simultaneously considers both the accuracy 
and recall rate to maximize these parameters and achieve a balance. 

3.2.2. Prognosis prediction of familial GGE patients 
The importance of the variables was determined according to the 

mean decrease in the Gini impurity. As shown in Fig. 5, the number of 
seizure types ever experienced was the most important variable in pre-
dicting the prognosis patients with familial GGE, followed by prior 
treatment duration (year), number of pre-treatment seizures, and 
response to the first drug. 

4. Discussion 

In this study, we evaluated 13 machine learning models; among 
which, the random forest classifier model had the best performance in 
terms of the averages of accuracy, AUC, and F1-score through parameter 
optimization. Furthermore, we analyzed the 18 characteristics of pa-
tients with familial GGE and found that the best distinguishing factors 
for final treatment outcomes were the number of seizure types experi-
enced, response to the first drug, prior treatment duration and number of 
pre-treatment seizures. These factors can help clinicians better predict 
the prognosis of patients with familial GGE and make appropriate and 

timely adjustments to the treatment plan to improve the patient’s 
prognosis. 

Among the 854 patients with familial GGE, 74.89% demonstrated a 
satisfactory response to the drug administered, which is approximately 
consistent with the findings of previous studies regarding the remission 
rate of the whole population of patients with GGE. (Choi et al., 2020; 
Seneviratne et al., 2012) Many factors may influence the outcomes of 
patients with GGE; among which, research background, study design, 
study cohort, follow-up time, and the definition of duration of remission 
of seizures (Seneviratne et al., 2012) are particularly important. 
Simultaneously, among the 18 characteristics, we found that the number 
of seizure types experienced is an important predictive factor of the 
prognosis of patients with familial GGE who are taking ASMs, which is 
consistent with previous studies. (Trinka et al., 2004) Moreover, Gelisse 
et al. (Gelisse et al., 2001) conducted a 1-year follow-up study of patients 
with juvenile myoclonic epilepsy. Among the 155 patients, they found 
that 62.5% of patients with drug-resistant epilepsy had absent, 
myoclonic, and generalized tonic-clonic seizures. In contrast, 23.3% of 
non-resistant patients had three types of seizures. All drug-resistant 
patients had no myoclonus as the only type of seizure, and there were 
no seizures or myoclonic seizures. 

Additionally, we found that that first drug response affected the 
patient’s overall drug response, which is in line with the result of a 
previous study. Mohanraj et al. (Mohanraj and Brodie, 2006) followed 
up 780 patients newly diagnosed with epilepsy in Glasgow and found 
that the overall response rates of the patients to the first, second, and 
third drugs were 50.4%, 10.7%, and 2.7%, respectively. Kwan et al. 
(Kwan and Brodie, 2000) conducted a prospective follow-up of 525 
patients with epilepsy. They found that among the 470 patients who 
received no prior treatment, 222 had no seizures during treatment with 
the first ASM. Furthermore, among the patients with no first drug 
response, 11% who failed treatment due to lack of efficacy were 
seizure-free, which was less than the treatment failure due to unbearable 
side effects (41%) or special reactions (55%). Other studies have drawn 
similar conclusions. (Dlugos et al., 2001; Elwes et al., 1984; Mohanraj 
and Brodie, 2013a; Sillanpää, 1993). 

Our study also found prior treatment duration and number of sei-
zures before treatment had a significant effect on patients’ prognosis. 
Previous studies have shown that recurrent seizures may cause shrinking 
of the hippocampus, resulting in hippocampal neuron loss and mossy 
fiber sprouting, which further enhance its excitatory recurring cycle. 
(Berg et al., 2010; Kälviäinen and Salmenperä, 2002; Kwan and Brodie, 
2000; Theodore et al., 1999) Additionally, failure to control seizures 
with drugs can progressively lead to drug-resistant epilepsy. Mohanraj 

Fig. 4. Receiver operating characteristic curves of the random forest classi-
fier model. 

Table 3 
Performance of the developing random forest classifier model on the test set.  

Model Accuracy 
(%) 

AUC 
(%) 

F1- 
score 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Random 
forest 
classifier 

91.23 92.6 84.21 89.92 95.24  

Fig. 5. Rank of importance of variables from the random forest classi-
fier model. 
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et al. (Mohanraj and Brodie, 2013b) believe that early treatment of 
patients with epilepsy minimizes the number of subsequent seizures and 
improves the prognosis of patients. Similarly, Reynolds et al. (Reynolds 
et al., 1983) hold that early treatment of seizures is the key to preventing 
drug-resistant seizures. In contrast, Feksi et al. (Feksi et al., 1991) found 
different results. They prospectively evaluated the anti-epileptic treat-
ment plan of patients with general tonic-clonic seizures in rural and 
semi-urban areas of Kenya. Among the 249 patients, 202 (81%) had not 
received any treatment, 52% had seizures for more than 5 years, and 
38% experienced at least 100 episodes of seizures. Finally, they found 
that prior ASM treatment duration and number of seizures before 
treatment had no influence on the patient’s treatment effect. 

The performance of the random forest model in our study achieved 
better accuracy and F1-score on the test dataset than on the training set, 
which is likely because the data distribution of the test set is more in line 
with the rules model learned from the training set, and the small number 
of our dataset. More data can be collected to get better model in the 
future. Moreover, this can also be explained by the fact that the final 
results of accuracy and F1-score in the training set is the average of the 
random forest model’s ten-fold cross-validation on the training set (ten 
random validation sets). Therefore, there will be different degree of 
accuracy and F1-score in the results of ten times of verification, so it is 
also possible that the result after averaging is slightly lower than the 
result of only one run. 

To the best of our knowledge, this is the first study to apply machine 
learning methods to predict the efficacy of ASMs in patients with fa-
milial GGE. The advantages of our study include having a large number 
of patients with familial GGE, with the same team performed the whole 
diagnosis, and subsequent follow-up adjustments to drug treatment. In 
addition, this is the first study to use the newly open source PyCaret to 
compare the performance of 13 classic machine learning prediction 
models on the training set and obtain a prediction model with the best 
performance, namely, the random forest classifier model. Furthermore, 
we used parameter optimization, a function of random forest classifier 
model, to obtain the results for predicting the prognosis of patients with 
familial GGE. The prediction results and performance evaluation in-
dicators of the model on the test set data were realized using the R 
software. The method adopted in this study makes appropriate use of the 
advantages of the novel PyCaret and traditional R software, making the 
study more efficient and effective. Despite these strengths, our study has 
some limitations. First, there is a certain randomness in the data selec-
tion when we conducted model training, and the distribution of the 
amount of data for the final outcome in the experimental data was un-
balanced. In the future, some advanced machine learning techniques 
especially for unbalanced data should be considered, such as the com-
bination of machine learning methods with techniques addressing the 
problem of unbalanced classification (Eitrich et al., 2007; Fernández 
et al., 2018; Scholar et al., 2021), ensemble learning algorithm (Tang 
et al., 2021), ect. Second, this was a single-center study, and there may 
have been selection bias in the inclusion of cases. Large-scale multi-
center prospective randomized controlled trial studies can be conducted 
in the future, and more relevant factors can be included to improve the 
accuracy of prediction for the whole population. 

In conclusion, our study shows that the number of seizure types 
experienced, response to the first drug, prior treatment duration and 
number of pre-treatment seizures were the most effective indicators for 
the final treatment results of patients with familial GGE. Furthermore, 
the random forest classifier model can be used to make early predictions 
regarding the efficacy of ASMs in patients with familial GGE, which can 
help clinicians select the best treatment strategies earlier and improve 
the patient’s prognosis. 
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